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A Simple Coupled-Mode Analysis Method
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and Coupled Dielectric
Waveguide Structures)

NAOTO KISHI, MEMBER, IEEE, AND EIKICHI YAMASHITA, FELLOW, fEEE

Abstract —A simple method is proposed for the coupled-modeanalysis
of multiple-core opticaf fiber structures and coupled dielectric waveguide
structures. The coupling coefficients between two adjacent cores are first

estimated based ou the point matcbiug of boundary conditions on the

surface of the two cores. The coupled-mode fields of the multiple-core

structures are then approximated by using the fields of the two adjacent

cores. Parameters calculated with this procedure are compared witJr those

obtained from a more rigorous analysis.

I. INTRODUCTION

o PTICAL fibers with multiple-core structures will have

great importance in the future application of high-

density optical transmission lines [1]–[3]. Multiple-wave-

guide optical coupler structures have been reported that

make use of the sharper transfer characteristics of such

devices [4], [5]. Coupled dielectric waveguide structures are

also expected to be used in millimeter-wave applications.

In the design of these structures, it is desirable to estimate

evanescent coupling properties between cores by using

simple coupled-mode expressions.

We propose in this paper a simple coupled-mode analy-

sis method for describing the coupling properties of multi-

ple-core structures by neglecting coupling effects between

nonadjacent cores at first. The propagation characteristics

of an isolated dual-core fiber are examined by using the

point matching of boundary conditions [6]–[8] to estimate

the total coupled-mode fields of multiple-core struc-

tures. This procedure corresponds to Huckel’s approxima-

tion in the analysis of molecular orbitals governed by

Schrodinger’s equation [9], [10] and is applied to dielectric

waveguide problems for the first time, to the authors’

knowledge, in this paper.
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II. COUPLED-MODE EQUATIONS FOR

DUAL-CORE STRUCTURES

Fig. 1 shows typical multiple-core structures, i.e., (a) n

circularly distributed cores [7], (b) n circularly distributed

cores ancl a central core [1], [3], [8], and (c) n linearly

distributed cores [3]–[5]. We classify these structures i~s

type 1, type 2, and type 3, respectively. The core separa-

tion of these structures is denoted by d or D, where D for

type 2 is defined by D =’ ( d/2)/sirl (2 n-/n ). Each of these

cores is of the same circular shape and has the same

dielectric constant Cl and the same radius a. The cladding

has the dielectric constant cc. We assume that all dielectric

regions are lossless, isotropic, and uniform along the prop-

agation axis (z axis).

The approximation method proposed in this paper is

based partly on a conventional coupled-mode analysis and

partly on coupled transmission line equations whose ma-

trix elements are identical to coupling coefficients.

We first consider the following basic coupled-mode

equations for the dual- core structure shown in Fig. 2,

whose propagation constants of the individual cores are

equally PO:

[1 [Al 1% 1[1c(d) /41
‘~p A ‘–~ C(d) 60 A

(11)
2 2

where Ai is the amplitude of the transverse electric field of

the i th core (i= 1,2), C’(d) is the coupling coefficient

between the cores whose separation is d, and ~ is the

propagation constant of the coupled mode.

Equation (1) can be easily solved as shown below:

(2ii)

i+= P’(d) =hi C(d). (2t))

In the scalar wave approximation, the solutions of (2a) and

(2b) define the field pattern shown in Fig. 3(a) and (b),

respectively.
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Fig. 1. Multiple-core structures to be considered in this analysis.
(a) Circularly distributed cores. (b) Circularly distributed cores and a

central core. (c) Linearly distributed cores.

d

Fig. 2. Dud-core structure used for the estimation

coefficients between adjacent cores.

The propagation constants, ~+(d) and ~

of the couphng

(d), can also

be calculated from the results of numerical analyses, such

as the point-matching method [6]–[8]. Therefore, the cou-

pling coefficient [5] C(d) can be derived from these propa-

gation constants obtained from the point-matching analy-

sis. The result is

C(d) = (#+(d) –~-(d))/2=A~(d)/2. (3)

In the formulation of coupled-mode equations for the

multiple-core structures shown in Fig. 1, we neglect the

W3cm
even+ odd +

even – odd–
(a) (b)

Fig. 3. Simplified field patterns of a dual-core structure. (a) Even+
mode and odd + mode. (b) Even-” mode and odd – mode.

ve

(a) (b)

Fig. 4. Coupling coefficient between two field vectors taking into ac-

count the angle made by these two field vectors. (a) Coupling coeffi-

cient C(d) between two paraflel vectors. (b) Field coupling coefficient

between two field vectors with the angle d defined by C(d).

coupling coefficients of nonadjacent cores because these

are considered to be very small in the first-order approxi-

mation.

Coupling coefficients between two adjacent cores are

obtained from (3), i.e., from the differences of the propa-

gation constants of a dual-core structure whose core

separation equals that of the adj scent two cores of a

multiple-core structure. Since the orientation of the trans-

verse electric field vectors is not always parallel in these

structures, we must take into account the angle O made by

these vectors (Fig. 4). Therefore, the field coupling coeffi-

cient C( d, 13)between these vectors can be defined here as

A~(d) Coso
C(d, f3)=C(d). cos O=y .

The field coupling coefficients are employed in

section to solve multiple-core coupling problems.

III. COUPLED-MODE EQUATIONS FOR

MULTIPLE-CORE STRUCTURES

Type 1: n Circularly Distributed Cores

(4)

the next

We denote the components of the transverse electric

field vector of the i th core A, by A: or A: depending on

their orientation, parallel or orthogonal, to the o, axis
(i=l,..., n) as shown in Fig. 1, respectively. Fig. 5 shows
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the relation between A;, A:, and A,. Simplified coupled-

mode equations for A; and A; are then written as

1863

/30 c1 c1
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(5b)

(5C)

.

---- ---- . .

A:
f(
/ Ai :

r

Cl=c d,? ==C05
() n

c,=c(’:-i)~

A~(d) 27r

2
sin —.

n

kThe propagation constant of mode m is obtained by

solving for the eigenvalues of (5a):

O’i-—. — .—

Bm=Bo+M(~)ocos {:(m-’))“a) Fig. 5. The relation between the two components, ,4: and A~, of the
vector A,.

The column vectors of amplitude coefficients [A:,. . . .

A;, A{,. -. , A;] T of the even and the odd mode, whi~h we

denote by A:, A;, are doubly degenerate, and given by
coupled-mode equations for this case can be written as

2?r
sin

()
—ml
n

2T
Cos

()
—ml
n

where Pt is the propagation constant of mode m of the

circularly distributed cores (eq. (6a)) and CC. is the field

coupling coefficient between a propagation mode for circu-

larly distributed cores (mode m in type 1) and a propaga-

tion mode for a central core. The field coupling coefficient

in the case of the even mode can be expressed as

2T
Cos

()
— mn
n

277
sin

U
————mn
n

2T
– sin

(1
—rn”l
n

2T

(1
cos —m-l

n

h’)2“T
Cos — mn

n1(”12?7
—sin — mn

n

(’b )

{

A~(D)
. 67 (m=l)

o (m#l).

Type 2: n Circularly Distributed Cores and a Central Core

From the results given for type 1, eigenmodes can be
(71b)

considered as the coupled modes of mode m for circularly

distributed cores and the propagation mode of the central

core. Their amplitude coefficients are denoted by A~, and
A~o, respectively (m = O,1,0.0, n; p = e, o). Therefore,

This result is found to be the same as the case of the odd

mode after a similar calculation. Finally, the solutions of
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Fig. 6. Comparison of the dependence of ~/kC on the core separation obtained from the present method and that from a

rigorous numerical analysis [8], [9]. (a) Circularly distributed cores (n = 4). (b) Cmcularly distributed cores ( n = 6). (c)
Circularly distributed cores and a central core (n = 6). (d) Linearly distributed cores (n = 3).
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(7a) can be written as

(

A/3(d) +/A@) 2+n. Af@)2
/30 + (rn=l)

&=

~=flo+A@(~)”’oi:(~-’)) ‘m#l)

\o (?’n# l).

(8c)

There are two modes for the mode number m =1. These

modes are distinguished by the superscripts + and – with

the relation /3J E & [8].

Type 3: n Linearly Distributed Cores

Using notation and symbols similar to those for types 1

and 2, coupled-mode equations can be written as

=–j

A/3(d)
80 —

2

2

1“”o“

[1
Af

. .

A“:

o

A/3(d)

2

A/l(d)

2

B,

(9)

The solution of (9) is also given in a fashion similar to

those of the preceding types as

&= Po+AB(d)”cosfi (lOa)

(lOb)

n’z.l. m
sin —

n+l

mn 77
sin —

n+l

IV. RESULTS OF MODAL ANALYSIS

In this section, we describe results of the modal analysis

given in the previous section. Fig. 6 shows a comparison of

the propagation constants obtained by the present method

and those by previous numerical analyses [7], [8] where the

wavenumber of the core and the cladding, kl and kC, are

defined by ti& and ,J&, respectively. As the sepa-

ration between cores is decreased, the effect of coupling

between nonadjacent cores naturally become strong and

the accuracy of the results of the present method is slightly

reduced.

The state of degeneracy, the order of propagation modes,

and field patterns [8, fig. 5] can also be obtained from (6),

(8), and (10), regardless of the size of core separation.

These results are consistent with the LP-mode notations

given by Gloge [11].

V. RESULTS OF COUPLING-FIELD ANALYSIS

In this section, we analyze the coupling properties of the

HEII mode in multiple-core structures using (6), (8), and

(10) to see how the power incident to one core is trans-

ferred to other cores. From the preceding equations, it is

easily found that the polarization of coupling fields inl o

other cores is parallel tcl the incident polarization. There-

fore, we do-not have to consider the orientation of the field

but the amplitude. The coupling field is expressed with the

superposition of the eigenmodes given by (6), (8), and (1OI).

The amplitudes of individual eigenmodes are deter-

mined by the excitation field at z = O. When one of the

cores is excited at z = O by a unit electric field, e,(z), the

complex amplitude of the electric field of the i th core at a

distance z is derived as follows.

Type 1: n Circularly Distributed Cores

We only have to consider the n th core excitation [8]. In

this case, e,(z) (i=l,2, . . . n) is given as

1“ 277
e,(z) = —e–Jp@ ~ COS

()

— mi . e–JAf3(d)c0s(2mn/n) .=

n ~=1 n

(1:1)

Type 2: n Circularly Distributed Cores and a Central Core

In the case of n th core excitation, e,(z) is expressed as

{

RZ RZ

1
Rcos Y–jA~(d)”sin ———

2 e -~ A~(d),/2Z
ei(z) =—e–JpOz —

n R

?t—1 2T

()
+ ~ cos — mi . e–J@(f/) cOs(?-77m/n). z

n
m=l

1’

(i=l,2,..., n) (12a)

A/3(D) e_J,@Oz RZ
e,(z) =– j ~

(1
. sin —

2
.e-jA~(d)/2z. (12b)
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Fig. 7. Comparison of the coupling characteristics obtained from the present method and those from a rigorous numerical

analysis [9]. (a) circularly distributed cores ( n = 4). (b) Circularly dlstritxrted cores ( n = 6) (c) Cu-cularly distributed cores

and a central core (n = 6, the sixth core excitation). (d) Circularly distributed cores and a central core (n = 6, the central

core excitation), (e) Circularly distributed cores and a central core for a large core separation ( n = 6, the sixth core

excitation). (f) Circularly distributed cores and a central core for a large core separation ( n = 6, the central core excitation)

(Continued ).
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Fig. 7. (Continued) (g) Linearly distributed cores (n= 3, the second core excitation). (h) Linearly distributed cores (n= 3,
the third core excitation).

In the case of central (Oth) core excitation, e,(z) is given

by

A~(D) RZ
e,(z) = –j~

()

e–JBOZ sin’ — e–JAfi(d)/2z

2

(z=l,2, ”””, n) (13a)

RZ RZ
Rcos Y+jA~(d)sin~

eO(z) = e–JPOz
R

(13b)

where R is defined as

R=/n.A/3(D)2+ Aj?(d)2. (14)

Type 3: n Linearly Distributed Cores

In the case of lth core excitation, e,(z) is given as

()mi w
. sin — .e-JA~(d)cOs{m”/(n+ l)}z. (15)

n+l

The normalized power f’,(z) in the individual cores is

naturally obtained from e,(z) as

Pi(z) =ei(z)e~(z). (16)

Fig. 7 shows the normalized power in each core versus

the normalized propagation length. The length is normal-

ized by the beat length L for a dual-core system which has

the core separation d (in the case of type 1 and type 3) or

D (in the case of type 2). The values obtained by the

present method are ‘compared with those by a previous

numerical analysis as shown in Fig. 7 [8]. Even when the

core separation d or D is small (d/a or D/a is equal to

3), good agreement between these values is seen except for

type 2. When the core separation D becomes large in type

2, good agreement is also seen between these values.

VI. DISCUSSION

1) We have proposed in this paper a simple coupled-

mode analysis (scalar wave analysis) for coupled dielectric

waveguide structures such as optical fibers with multiple

cores. It has been found from the foregoing results that

this method is valid and useful for providing approximate

solutions to these types of multiple-waveguide problems.

2) We have been able to express the coupled modes of

the multiple-core structures in the explicit and simple forlm

given by (6), (8), and (10)I using this approximation method.

The state of degeneracy and the order of propagaticm

modes given by (6), (8), and (10) are consistent with the

results of point-matching analysis regardless of the size of

core separation. In particular eigenmodes in type 1 an~d

type 2 given by (6) and (8) have a form identical to those

obtained from group theory [7]–[10].

The effect of the central core can be explained from the

content of (7) and (8) of type 2. The field coupling coeft’i-

cient between the mode of type 1 and the mode of the

central core has been found to be zero except for the ca$e

m=l.

3) Fig. 6 shows that if the core separation becomes

larger, the effect of the coupling between nonadjacent

cores becomes weaker, so that results with the present

approximation method become more accurate.

4) It can be stated from the results shown in Fig. 7 that

the accuracy of the coupling field calculation in type 1 and

type 3 is better than that in type 2 when the core separa-

tion is relatively small. If the core separation becomes

larger, however, the accuracy of coupling field calculation

in type 2 is improved.

VII. CONCLUSION

The proposed approximation method has been found to

be a simple, efficient, and practical tool for the coupled-

mode characterization of complicated multiple-core fiber

structures or multiple dielectric waveguide structures. It

should be pointed out, however, as noticed in some of our

results, that this methc~d might not work well for very

small separations between dielectric waveguides.

ACKNOWLEDGMENT

The authors thank Dr. K. Atsuki of the University of

Electro-Communications and S. Ozeki of the Electronic

Navigation Research Institute, Ministry of Transport of

the Japanese Government, for their helpful comments and

assistance.



1868

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

REFERENCES

IEEE TmNsAcTIoNs oNMIcRowAvE THEoRYAND Techniques, voL.36, No, 12, DECEMBER 1988

N. Kashima, E. Maekawa, and F, Nihei, “New type of multicore
fiber,”in Proc. OFC, Apr. 1982, pp. 46-47.

S. Shimada, E. Maekawa, and H. Murata, “Fundamental studies on
flat bunched optical fibers,” J, Lightwuve Technol., vol. LT-3, pp.
159-164, Feb. 1985.

F. Nihei, Y. Yamamoto, and N. Kojima, ’’Optical subscriber cable

technologies in Japanj” J. Lightwave Technol., vol. LT-5, pp.
809-821, June 1987.

J. P. Donnelly, N. L. DeMeo, Jr., and G. A. Ferrante, “Three-guide

optical couplers in GaAs~’ J. Lightwaue Technol., vol. LT-1, pp.
417–424, June 1983.

H. A, Haus and L. Molter-Orr, “Coupled multiple waveguide
systems,” IEEEJ. Quantum Electron., vol. QE-19, pp. 840-844,
May 1983.

E. Yamashita, Y, Nishino, and K. Atsuki, “Anafysis of mul-

tiple dielectric waveguide systems with extended point-matching

method,” in 1983 MTT-S Int. Microwave Symp. Dig., May–June

1983, pp. 119-121.

E. Yamashita, S. Ozeki, and K, Atsuki, “Modal anafysis method for

opticaf fibers with symmetrically distributed multiple cores,” J.

Lightwaue Technol., vol. LT-3, pp.341-346, Apr. 1985.

N. Kishi, Yamashita, and K. Atsuki, “Modaf and coupling field

analysis of optical fibers with circularly distributed multiple cores
and a central core,” J. Lightwave Technol., voLLT-4, pp. 991-996,

Aug. 1986.

G. Burns, Introduction to Group Theoiy with Applications, New

York: Academic Press, 1977.

A. Streitweiser, Jr. Molecular Orbita[ Theory for Organic Chemists.

New York: Wiley, 1961.

D. Gloge, “Weakly guiding fibers;’ Appl. Opt., vol. 10, pp.
2252–2258, Oct. 1971.

Y. Suematsu and K. Kishino, “Coupling coefficient in strongly

coupled dielectric waveguides,” Radio Sci., vol. 12, pp. 587-592,

July–Aug. 1977. (This paper, which has been added to the refer-
ences by a reviewer’s suggestion, treats two strongly coupled paral-
lel dielectric slab waveguides based on the superposition of wave-

guide modes.)

Naoto Kkhi (S’85-M87) was born in Tokyo, Japan, on March 11,
1960. He received the B.S. and M,S, degrees from the University of
Electro-Communications, Tokyo, Japan, in 1982 and 1984, respectively,

and the Ph.D. degree from the University of
Tokyo in 1987, all in electrical engineering.

He became a Research Associate in the De-

partment of Electronic Engineering at the Uni-
versity of Electro-Communications in 1987. His

main fields of interest are microwave and light-
wave circuits and transmission lines of various

types, numerical analysis methods of electromag-

netic fields, and musicaJ instruments.

Dr. Kishi is a member of the Institute of

Electronics, Information and Communication
Engineers of Japan.

Eikichi Yamashita (M66– SM79–F’84) was born
in Tokyo, Japan, on February 4, 1933. He re-

ceived the B.S. degree from the University of

Electro-Communications, Tokyo, Japan, and the

M.S. and Ph.D. degrees from the University of
Illinois, Urbana, afl in electrical engineering, in
1956, 1963, and 1966, respectively.

From 1956 to 1964, he was a member of the

Research Staff on millimeter-wave engineering at
the Electrotechnical Laboratory, Tokyo, Japan.

While on leave from 1961 to 1963 and from 1964
to 1966, he studied solid-state devices in the millimeter-wave region at the
Electro-Physics Laboratory, University of Illinois. From 1966 to 1967, he
was with the Antenna Laboratory, University of Illinois. He became
Associate Professor in 1967 and Professor in 1977 in the Department of

Applied Electronics, University of Electro-Communications, Tokyo,
Japan. His research work since 1956 has been on microstrip transmission

lines, suspended striplines, wave propagation in gaseous plasma, pyro-

electric-effect detectors in the submillimeter-wave region, tunnel-diode

oscillators, wide-band laser modulators, and various types of optical
fibers.

Dr. Yamashita is a member of the Institute of Electronics, Information
and Communication Engineers of Japan and Sigma Xi. During the period.

1980–1984, he served as Associate Editor of the IEEE TRANSACTIONS ON

MICROWAVE THEORY AND TECHNIQUES. He was elected Chairman of the

Tokyo Chapter of the MTT Society for the period 1985-1986.


