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A Simple Coupled-Mode Analysis Method
for Multiple-Core Optical Fiber
and Coupled Dielectric
Waveguide Structures

NAOTO KISHI, MEMBER, 1EEE, AND EIKICHI YAMASHITA, FELLOW, TEEE

Abstract — A simple method is proposed for the coupled-mode analysis
of multiple-core optical fiber structures and coupled dielectric waveguide
structures. The coupling coefficients between two adjacent cores are first
estimated based on the point matching of boundary conditions on the
surface of the two cores. The coupled-mode fields of the multiple-core
structures are then approximated by using the fields of the two adjacent
cores. Parameters calculated with this procedure are compared with those
obtained from a more rigorous analysis.

I. INTRODUCTION

O PTICAL fibers with multiple-core structures will have
great importance in the future application of high-
density optical transmission lines [1]-{3]. Multiple-wave-
guide optical coupler structures have been reported that
make use of the sharper transfer characteristics of such
devices [4], [5]. Coupled dielectric waveguide structures are
also expected to be used in millimeter-wave applications.
In the design of these structures, it is desirable to estimate
evanescent coupling properties between cores by using
simple coupled-mode expressions.

We propose in this paper a simple coupled-mode analy-
sis method for describing the coupling properties of multi-
ple-core structures by neglecting coupling effects between
nonadjacent cores at first. The propagation characteristics
of an isolated dual-core fiber are examined by using the
point matching of boundary conditions [6]-[8] to estimate
the total coupled-mode fields of multiple-core struc-
tures. This procedure corresponds to Hiickel’s approxima-
tion in the analysis of molecular orbitals governed by
Schrédinger’s equation [9], [10] and is applied to dielectric
waveguide problems for the first time, to the authors’
knowledge, in this paper.
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II. CoUPLED-MODE EQUATIONS FOR
DUAL-CORE STRUCTURES

Fig. 1 shows typical multiple-core structures, i.e., (a) n
circularly distributed cores [7], (b) n circularly distributed
cores and a central core [1], [3], [8], and (c) n linearly
distributed cores [3]-[5]. We classify these structures as
type 1, type 2, and type 3, respectively. The core separa-
tion of these structures is denoted by d or D, where D for
type 2 is defined by D = (d /2)/sin(27/n). Each of these
cores is of the same circular shape and has the same
dielectric constant ¢; and the same radius a. The cladding
has the dielectric constant ¢ .. We assume that all dielectric
regions are lossless, isotropic, and uniform along the prop-
agation axis (z axis).

The approximation method proposed in this paper is
based partly on a conventional coupled-mode analysis and
partly on coupled transmission line equations whose ma-
trix elements are identical to coupling coefficients.

We first consider the following basic coupled-mode
equations for the dual-core structure shown in Fig. 2,
whose propagation constants of the individual cores are

C(d)

equally B,:
J4] | B 4,
Pl e s |l

where A, is the amplitude of the transverse electric field of
the ith core (i=1,2), C(d) is the coupling coefficient
between the cores whose separation is d, and B is the
propagation constant of the coupled mode.

Equation (1) can be easily solved as shown below:

B=B*(d)=PBy+C(d).

In the scalar wave approximation, the solutions of (2a) and
(2b) define the field pattern shown in Fig. 3(a) and (b),
respectively.

(1)

(2a)

(2b)
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Fig. 1. Multiple-core structures to be considered in this analysis.
(a) Circularly distributed cores. (b) Circularly distributed cores and a
central core. (c) Linearly distributed cores.

ool

Fig. 2. Dual-core structure used for the estimation of the coupling
coefficients between adjacent cores.

The propagation constants, 87 (d) and B~ (d), can also
be calculated from the results of numerical analyses, such
as the point-matching method [6]-[8]. Therefore, the cou-
pling coefficient [S] C(d) can be derived from these propa-
gation constants obtained from the point-matching analy-
sis. The result is

(3)

C(d)=(B(d)-B (d))/2=28(d)/2.
In the formulation of coupled-mode equations for the
multiple-core structures shown in Fig. 1, we neglect the
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Simplified field patterns of a dual-core structure. (a) Even™
mode and odd* mode. (b) Even™ mode and odd™ mode.

Fig. 3.

OO Q
SRS
(a) (b)

Fig. 4. Coupling coeffictent between two field vectors taking into ac-
count the angle made by these two field vectors. (a) Coupling coeffi-
cient C(d) between two parallel vectors. (b) Field coupling coefficient
between two field vectors with the angle ¢ defined by C(d).

coupling coefficients of nonadjacent cores because these
are considered to be very small in the first-order approxi-
mation.

Coupling coefficients between two adjacent cores are
obtained from (3), i.e., from the differences of the propa-
gation constants of a duval-core structure whose core
separation equals that of the adjacent two cores of a
multiple-core structure. Since the orientation of the trans-
verse electric field vectors is not always parallel in these
structures, we must take into account the angle § made by
these vectors (Fig. 4). Therefore, the field coupling coeffi-
cient C(d, @) between these vectors can be defined here as

AB(d)
C(d,0)=C(d)-cosﬂ=Tcos& (4)
The field coupling coefficients are employed in the next
section to solve multiple-core coupling problems.

III. CouPLED-MODE EQUATIONS FOR

MULTIPLE-CORE STRUCTURES

Type 1: n Circularly Distributed Cores

We denote the components of the transverse electric
field vector of the ith core 4, by A¢? or A? depending on
their orientation, parallel or orthogonal, to the ¢, axis
(i=1,---,n) as shown in Fig. 1, respectively. Fig. 5 shows
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the relation between A4, A% and A4,. Simplified coupled-
mode equations for 47 and A? are then written as
B G G 0 ) -G
" 4¢ 71 ‘. e
1?1 0 G 0 ~C, (Al
e C C B -C -C 0 e
~ Bl g | = - i = . ’ ’ y (5a)
s 0 G & By C G 41
i A Z ] C2 . O Cl O 14' Z
0 c, 0 c,
| (oN G 0 C ¢ By |
where
2a AB(d) 27
Cl—C(d,7)— 5 oS (5b)
20 @\ AB(d) 2=
C,=Cld,———<-|= in—.
2 ( . ) 5 sin— (5¢)
The propagation constant of mode m is obtained by ’
solving for the eigenvalues of (5a): '
S, — O~
27 Ae '
Bu=Bot AB(d)cos| Z(m-D)}. (6 i
n Fig. 5. The relation between the two components, 47 and A2, of the
vector 4,.

The column vectors of amplitude coefficients [Af,-- -,
A8, A3,- -+, A°]T of the even and the odd mode, which we
denote by 4¢, A, are doubly degenerate, and given by

|

2m 1 2m
cos(———m-l) sin(———m-l)
n n
2-77 ’ 2.7r
1 cos(—-—mn) sin(——mn)
A = — " A0 = — "
m Jn (27 m 2
—sin| —m-1 cos(—m-l)
n n
) ( ‘277' ) ( 2'77' )
—sin| —mn cos| —mn
. n - L n -
(6b)

Type 2: n Circularly Distributed Cores and a Central Core

From the results given for type 1, eigenmodes can be
considered as the coupled modes of mode m for circularly
distributed cores and the propagation mode of the central
core. Their amplitude coefficients are denoted by A2 and
respectively (m =0,1,---, n; p =e, 0). Therefore,

AP

mQ»

coupled-mode equations for this case can be written as

Hlecle sl o

o | Al
= JBu| 4
where B, is the propagation constant of mode m of the

B
C

cs

Ccs
Bo

. circularly distributed cores (eq. (6a)) and C,, is the field

coupling coefficient between a propagation mode for circu-
larly distributed cores (mode m in type 1) and a propaga-
tion mode for a central core. The field coupling coefficient
in the case of the even mode can be expressed as

n 29 1 2
C,= Z {C(D,;y—i)Wcos(——mi)

=1 n
20 w7\ -1 (27
E) T sm( " mz)}

D, Ti +
(m=1) (7b)
(m#1).

v

AB(D)
2

Vn
0

This result is found to be the same as the case of the odd
mode after a similar calculation. Finally, the solutions of
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Fig. 6. Comparison of the dependence of 8/k, on the core separation obtained from the present method and that from a
rigorous numerical analysis [8], [9]. (a) Circularly distributed cores (n =4). (b) Circularly distributed cores (n=6). (c)
Circularly distributed cores and a central core (1 = 6). (d) Linearly distributed cores (n = 3).
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(7a) can be written as

. AB(d) £ /AB(d)*+n-AB(D)?

g - Bo 7 (m=1)
BS=,30+A,8(d)-cos{27ﬂ(m—i)} (m+1).
(8a)
A2 =1 (m=1,2,---,n) (8b)
1| Ap(d) | AB(d)
A2 = _\/——}’l—{_'A_,B—(—B—)—i n+W} (m=1)
0 (m#1).

(8¢)
There are two modes for the mode number m =1. These
modes are distinguished by the superscripts + and — with
the relation B; > B7 [8].
Type 3: n Linearly Distributed Cores

Using notation and symbols similar to those for types 1
and 2, coupled-mode equations can be written as

af
— B
Az
| AB(d) ]
0
2
0
AB(d)
— o 2
’ AB(d)
2
0 AB(d)
L 2 0 p
af
: (9)
AP

The solution of (9) is also given in a fashion similar to
those of the preceding types as

AB(d T 10
B,,=Bo+ AB( )-cosn_i_1 (10a)
- om-l-7

Af R |
a=1 = (100)
AP _ mnw
sin
n+1

IV. RESULTS OF MODAL ANALYSIS

In this section, we describe results of the modal analysis
given in the previous section. Fig. 6 shows a comparison of
the propagation constants obtained by the present method
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and those by previous numerical analyses [7], [8] where the
wavenumber of the core and the cladding, k;, and k_, are
defined by wye p, and w\/ECTL; , respectively. As the sepa-
ration between cores is decreased, the effect of coupling
between nonadjacent cores naturally become strong and
the accuracy of the resulis of the present method is slightly
reduced.

The state of degeneracy, the order of propagation modes,
and field patterns [8, fig. 5] can also be obtained from (6),
(8), and (10), regardless of the size of core separation.
These results are consistent with the LP-mode notations
given by Gloge [11].

V. REeSULTS OF COUPLING-FIELD ANALYSIS

In this section, we analyze the coupling properties of the
HE,,; mode in multiple-core structures using (6), (8), and
(10) to see how the power incident to one core is trans-
ferred to other cores. From the preceding equations, it is
easily found that the polarization of coupling fields into
other cores is parallel to the incident polarization. There-
fore, we do not have to consider the orientation of the field
but the amplitude. The coupling field is expressed with the
superposition of the eigenmodes given by (6), (8), and (10).

The amplitudes of individual eigenmodes are deter-
mined by the excitation field at z =0. When one of the
cores is excited at z =0 by a unit electric field, e,(z), the
complex amplitude of the electric field of the ith core at a
distance z is derived as follows.

Type 1: n Circularly Distributed Cores

We only have to consider the nth core excitation [8]. In
this case, e,(z) (i=1,2, -+, n) is given as

1 n 2ar
e(z)= ;e_fﬂ‘)‘" Y cos(—mi)~e*JAB“”°°S‘2”’"/")'~'.

(11)

m=1

Type 2: n Circularly Distributed Cores and a Central Core

In the case of nth core excitation, e,(z) is expressed as

RZ  RZ
RCOS—z“ - jAB(d)-s1n—2—

(z) = —e7ho? e—/AB(d)/2Z
e(z)=—e -

n—1

+ Z Cos(glmj) . @ ~IBB(d) cosQ@mm/n)-Z
m=1 n
(i=172,"',71) (12&)
AB(D RZ '

eo(Z) =—7 '8; )6_”B°Z-Sin(—‘2—) .e—jAﬁ(d)/2Z. (12b)
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excitation). (f) Circularly distributed cores and a central core for a large core separation (n = 6. the central core excitation)

(Continued ).
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Fig. 7. (Continued) (g) Linearly distributed cores (n = 3, the second core excitation). (h) Linearly distributed cores (n =3,
the third core excitation).

In the case of central (Oth) core excitation, e,(z) is given
by

e(z)=- jA'B(D) e BoZgip 55 e JAB(d)/2Z
! R 2
(i=1,2,---,n) (13a)
RZ RZ
Rcos 5" + jAB(d)sin Y
eo(z) = e ot (13b)

R

where R is defined as

R=yn-AB(D)*+AB(d)*.

(14)

Type 3: n Linearly Distributed Cores

In the case of /th core excitation, e,(z) is given as

2 ) n
e(z)=—ge Y

mlw

sin
1 n+1

n+1

mim
-sin( — ) _e—jAB(d)cos{mvr/(n+1)}Z. (15)

The normalized power P(z) in the individual cores is
naturally obtained from e,(z) as

P(z) =e;(z)e*(z). (16)
Fig. 7 shows the normalized power in each core versus
the normalized propagation length. The length is normal-
ized by the beat length L for a dual-core system which has
the core separation d (in the case of type 1 and type 3) or
D (in the case of type 2). The values obtained by the
present method are compared with those by a previous
numerical analysis as shown in Fig. 7 [8]. Even when the
core separation d or D is small (d/a or D/a is equal to
3), good agreement between these values is seen except for
type 2. When the core separation D becomes large in type
2, good agreement is also seen between these values.

V1. DiscussiON

1) We have proposed in this paper a simple coupled-
mode analysis (scalar wave analysis) for coupled dielectric
waveguide structures such as optical fibers with multiple
cores. It has been found from the foregoing results that

this method is valid and useful for providing approximate
solutions to these types of multiple-waveguide problems.

2) We have been able to express the coupled modes of
the multiple-core structures in the explicit and simple form
given by (6), (8), and (10) using this approximation method.
The state of degeneracy and the order of propagation
modes given by (6), (8), and (10) are consistent with the
results of point-matching analysis regardless of the size of
core separation. In particular eigenmodes in type 1 and
type 2 given by (6) and (8) have a form identical to those
obtained from group theory [7]-[10].

The effect of the central core can be explained from the
content of (7) and (8) of type 2. The field coupling coeffi-
cient between the mode of type 1 and the mode of the
central core has been found to be zero except for the case
m=1.

3) Fig. 6 shows that if the core separation becomes
larger, the effect of the coupling between nonadjacent
cores becomes weaker, so that results with the present
approximation method become more accurate.

4) Tt can be stated from the results shown in Fig. 7 that
the accuracy of the coupling field calculation in type 1 and
type 3 is better than that in type 2 when the core separa-
tion is relatively small. If the core separation becomes
larger, however, the accuracy of coupling field calculation
in type 2 is improved.

VII.

The proposed approximation method has been found to
be a simple, efficient, and practical too! for the coupled-
mode characterization of complicated multiple-core fiber
structures or multiple dielectric waveguide structures. It
should be pointed out, however, as noticed in some of our
results, that this method might not work well for very
small separations between dielectric waveguides.

CONCLUSION
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